Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2020

Unraveling the Formation Mechanism for the Bursts of Electron Butterfly Distributions: Test Particle and Quasilinear Simulations

Energetic electron dynamics is highly affected by plasma waves through quasilinear and/or nonlinear interactions in the Earth s inner magnetosphere. In this letter, we provide physical explanations for a previously reported intriguing event from the Van Allen Probes observations, where bursts of electron butterfly distributions at tens of keV exhibit remarkable correlations with chorus waves. Both test particle and quasilinear simulations are used to reveal the formation mechanism for the bursts of electron butterfly distribution. The test particle simulation results indicate that nonlinear phase trapping due to chorus waves is the key process to accelerate electrons to form the electron butterfly distribution within ~30 s, and reproduces the observed features. Quasilinear simulation results show that although the diffusion process alone also contributes to form the electron butterfly distribution, the timescale is slower. Our study demonstrates the importance of nonlinear interaction in rapid electron acceleration at tens of keV by chorus waves.

Gan, L.; Li, W.; Ma, Q.; Artemyev, A.; Albert, J.;

Published by: Geophysical Research Letters      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090749

butterfly distribution; chorus waves; Electron acceleration; Radiation belts; nonlinear interaction; Van Allen Probes

2017

Relativistic electron\textquoterights butterfly pitch angle distribution modulated by localized background magnetic field perturbation driven by hot ring current ions

Dayside modulated relativistic electron\textquoterights butterfly pitch angle distributions (PADs) from \~200 keV to 2.6 MeV were observed by Van Allen Probe B at L = 5.3 on 15 November 2013. They were associated with localized magnetic dip driven by hot ring current ion (60\textendash100 keV proton and 60\textendash200 keV helium and oxygen) injections. We reproduce the electron\textquoterights butterfly PADs at satellite\textquoterights location using test particle simulation. The simulation results illustrate that a negative radial flux gradient contributes primarily to the formation of the modulated electron\textquoterights butterfly PADs through inward transport due to the inductive electric field, while deceleration due to the inductive electric field and pitch angle change also makes in part contribution. We suggest that localized magnetic field perturbation, which is a frequent phenomenon in the magnetosphere during magnetic disturbances, is of great importance for creating electron\textquoterights butterfly PADs in the Earth\textquoterights radiation belts.

Xiong, Ying; Chen, Lunjin; Xie, Lun; Fu, Suiyan; Xia, Zhiyang; Pu, Zuyin;

Published by: Geophysical Research Letters      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2017GL072558

butterfly distribution; Radiation belt; ring current; Van Allen Probes

2015

Butterfly pitch-angle distribution of relativistic electrons in the outer radiation belt: Evidence of nonadiabatic scattering

In this paper we investigate the scattering of relativistic electrons in the night-side outer radiation belt (around the geostationary orbit). We consider the particular case of low geomagnetic activity (|Dst|< 20 nT), quiet conditions in the solar wind, and absence of whistler wave emissions. For such conditions we find several events of Van-Allen probe observations of butterfly pitch-angle distributions of relativistic electrons (energies about 1-3 MeV). Many previous publications have described such pitch-angle distributions over a wide energy range as due to the combined effect of outward radial diffusion and magnetopause shadowing. In this paper we discuss another mechanism that produces butterfly distributions over a limited range of electron energies. We suggest that such distributions can be shaped due to relativistic electron scattering in the equatorial plane of magnetic field lines that are locally deformed by currents of hot ions injected into the inner magnetosphere. Analytical estimates, test particle simulations and observations of the AE index support this scenario. We conclude that even in the rather quiet magnetosphere, small scale (MLT-localized) injection of hot ions from the magnetotail can likely influence the relativistic electron scattering. Thus, observations of butterfly pitch-angle distributions can serve as an indicator of magnetic field deformations in the night-side inner magnetosphere. We briefly discuss possible theoretical approaches and problems formodeling such nonadiabatic electron scattering.

Artemyev, A.; Agapitov, O.; Mozer, F.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2014JA020865

butterfly distribution; Electron scattering; nonadiabatic dynamics; Radiation belts; Van Allen Probes



  1